If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-10x-216=0
a = 4; b = -10; c = -216;
Δ = b2-4ac
Δ = -102-4·4·(-216)
Δ = 3556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3556}=\sqrt{4*889}=\sqrt{4}*\sqrt{889}=2\sqrt{889}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{889}}{2*4}=\frac{10-2\sqrt{889}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{889}}{2*4}=\frac{10+2\sqrt{889}}{8} $
| 9+4a=4-17a | | -1k+8k=79 | | 36+8r=8r+4(r+2) | | 9+4=4-17a | | -16-8x=4(1-7x) | | 14r=28 | | 9=6k-3k | | 7x+2=-7+3x+21 | | 2n+9=n | | n/7=-10/7 | | -20=-4x-5+1 | | -11d+12=-16d+19+18 | | 1/4(20-4a)=6a-2 | | 26.5=z(2.3+7.7) | | 2x-7=-11+x | | -2x-25=-3(1+8x) | | -52+x=256 | | -4+6m-5m=2-5m | | 7c-7=-19+c | | -3x³-18²+21x=0 | | 4.5(8-x)+36=102-2.5(3x+28) | | -3(y+1)=5y-3+3(2y+4) | | 4(4-5x)+8x=8-4x | | -7(p+8)=4+5p | | 13s-17+20s=17s+15 | | -4(-6u+4)-8u=2(u-2)-8 | | -22-7x=-4(-6-2x)-1 | | 7–b=3 | | -7=2+3y | | |x|-19=-9 | | 4.06-9.3z=-5.37-13.4z | | 6x—11=-35 |